

The New Zealand Institute for Plant & Food Research Limited

Produrre kiwi nell'era della Psa

The New Zealand kiwifruit industry in presence of Pseudomonas syringae pv. actinidiae

Joel L Vanneste

MACFRUT 2013 Cesena, Italy

The New Zealand kiwifruit industry in perspective

US Dept of State Geographer © 2012 Google

The New Zealand kiwifruit industry in perspective

- 2011 exports from New Zealand horticulture industry NZ\$ 3.5 billions
 - **2011 Exports from kiwifruit industry NZ\$ 962 millions** (600 mEuros)
 - Kiwifruit industry is the largest horticultural export industry in New Zealand
- Last 11 years number of kiwifruit trays exported has doubled
- Av. OGR (Orchard Gate Return) for green kiwifruit NZ\$41 830 (26 000 Euros) (export vol 79%, value 67%)
- Av. OGR for gold kiwifruit NZ\$90 911 (56 000 Euros) (export vol 21%, value 33 %)

US Dept of State Geographer © 2012 Google

November 2010 detection of Psa in New Zealand

Plant & Food RESEARCH RANGAHAU AHUMÅRA KAI

Two populations of Psa in New Zealand (Psa-V and Psa-LV)

Vanneste JL et al. Plant Disease 2013

Phylogeny of Psa based on Whole Genome Sequence

McCann, et al. 2013 PLoS Pathog Vanneste et al. 2013. Plant Disease

November 2010 detection of biovar 3 Psa in New

Zealand

Bay of Plenty December 2010

What is the situation today? (18 September 2013)

- » Out of 3293 kiwifruit orchards in New Zealand 2262 orchards affected by Psa biovar 3
- » 10388 hectares of orchards where Psa biovar 3 has been identified
- » 75 percent of New Zealand kiwifruit hectares are on an orchard affected by Psa biovar 3
- » New regions getting infected, Whanganui being latest region declared affected by Psa biovar 3

Cost of Psa in New Zealand (2012 study)

- In less than 2 years over 2000 orchards affected (70%)
- Est of cost over the next 5 years: NZ\$ 310 -410 million (191-253 mEuros)
- Est cost over a 15 years period NZ\$885 million (547mEuros)
- Between 2012-2016, 360 to 470 FTEs lost in the Bay of Plenty alone

Cost of Psa in New Zealand (2013 estimate)

- » Response to Psa discovery NZ \$ 42 million (26 mEuros)
- » In Te Puke alone over 1 000 ha of Hort16A cut out
- » Approx. 2100 ha grafted on new variety (G3) NZ\$ 60 000/ha for a total of \$ 60 million (37mEuros)
- » Less than 100% production levels for new cultivars and Hayward

» Reduction of capital land value 450K/ha to 100K/ha for Gold and 250K/ha to 150K/ha for Hayward. Total loss \$ 2 billion (1.24 b Euros)

The disease triangle can explain why Psa such a problem in New Zealand

The disease triangle can explain why Psa such a problem

Climatic considerations:

- » Disease less active above 20° C, no infection above 25° C
- » Most active when average temperature over 10 days is between 10° C and 20° C

Summer Bay of Plenty Ave temp below 20° C

The disease triangle can explain why Psa such a problem

Narrow genetic base

Monoculture

The New Zealand Institute for Plant & Food Research Limited

The disease triangle can explain why Psa such a problem

Inoculation of lower leaf surface

Paul Sutherland, PFR

Colonisation of the stomata and bacteria exuding from stomata

Day 5

Paul Sutherland, PFR

Colonisation of the tissues below the stomata

Colonisation of the tissues below the stomata

Inoculated tissue – 5 days

Paul Sutherland, PFR

Leaf infection

Infected cane (lenticel)

Paul Sutherland, PFR

Psa infected cane cross-section 1000x

Colonisation of the xylem by Psa

Paul Sutherland, Ian Hallett and Midori Jones New Zealand Institute for Plant & Food Research Limited

The solution to the Psa problem is in the disease triangle

In conclusion

Partners in Your Future

www.plantandfood.co.nz/letsbeatpsa

The New Zealand Institute for Plant & Food Research Limited

The New Zealand Institute for Plant & Food Research Limited

Partners in Your Future

www.plantandfood.co.nz/letsbeatpsa